Do you know what goes into developing an #LLM?
你知道開發(fā)一個大型語言模型需要涉及什么嗎?
LLMs are the backbone of our GenAI applications and it is very important to understand what goes into creating these LLMs.
大型語言模型是生成式人工智能應用的支柱,理解創(chuàng)建這些大型語言模型需要什么是非常重要的。
Just to give you an idea, here is a very basic setup and it involves 3 stages.Here are the different stages of building an LLM.
為了讓你有個概念,下面有一個非?;镜慕榻B,以下是構建一個大型語言模型的三個不同階段。
Stage 1: Building(構建)
Stage 2: Pre-training(預訓練)
Stage 3: Finetuning(微調)
? Building Stage(構建階段):
? Data Preparation: Involves collecting and preparing datasets.
? 數據準備:包括收集和準備數據集。
? Model Architecture: Implementing the attention mechanism and overall architecture
? 模型架構:實施注意力機制和整體架構。
? Pre-Training Stage:
? Training Loop: Using a large dataset to train the model to predict the next word in a sentence.
? 訓練循環(huán):使用一個大型數據集來訓練模型以預測句子中的下一個單詞。
? Foundation Models: The pre-training stage creates a base model for further fine-tuning.
? 基礎模型:通過預訓練階段就創(chuàng)建了一個用于進一步微調的基礎模型。
? Fine-Tuning Stage(?微調階段):
? Classification Tasks: Adapting the model for specific tasks like text categorization and spam detection.
? 分類任務:使模型適應特定任務,如文本分類和垃圾郵件檢測。
? Instruction Fine-Tuning: Creating personal assistants or chatbots using instruction datasets.
? 指令微調:使用指令數據集創(chuàng)建個人助手或聊天機器人。
Modern LLMs are trained on vast datasets, with a trend toward increasing the size for better performance.
現代大型語言模型是在龐大的數據集上進行訓練的,有一種趨勢是為了獲得更好的性能而增加模型規(guī)模(大?。?/em>
The above explained process is just the tip of the iceberg but its a very complex process that goes into building an LLM. It takes hours to explain this but just know that developing an LLM involves gathering massive text datasets, using self-supervised techniques to pretrain on that data, scaling the model to have billions of parameters, leveraging immense computational resources for training, evaluating capabilities through benchmarks, fine-tuning for specific tasks, and implementing safety constraints.
上面解釋的過程只是冰山一角,構建一個大型語言模型是一個非常復雜的過程。這需要幾個小時來解釋,但要知道開發(fā)一個大型語言模型涉及收集大量文本數據集,使用自監(jiān)督技術在該數據上進行預訓練,將模型擴展到擁有數十億,數百億個參數,利用巨大的計算資源進行訓練,通過基準測試評估能力,針對特定任務進行微調,并實施安全約束。