前言
功率半導(dǎo)體熱設(shè)計是實現(xiàn)IGBT、碳化硅SiC高功率密度的基礎(chǔ),只有掌握功率半導(dǎo)體的熱設(shè)計基礎(chǔ)知識,才能完成精確熱設(shè)計,提高功率器件的利用率,降低系統(tǒng)成本,并保證系統(tǒng)的可靠性。
功率器件熱設(shè)計基礎(chǔ)系列文章會比較系統(tǒng)地講解熱設(shè)計基礎(chǔ)知識,相關(guān)標(biāo)準(zhǔn)和工程測量方法。
為什么引入結(jié)構(gòu)函數(shù)?
在功率器件的熱設(shè)計基礎(chǔ)系列文章《功率半導(dǎo)體殼溫和散熱器溫度定義和測試方法》和《功率半導(dǎo)體芯片溫度和測試方法》分別講了功率半導(dǎo)體結(jié)溫、芯片溫度、殼溫和散熱器溫度的測試方法,用的測溫儀器是熱電偶、紅外成像儀和模塊中的NTC和芯片上的二極管。
然而,由于被測器件表面和傳感器探頭之間的接觸熱阻、傳感器導(dǎo)線的熱流泄漏和被測物體表面上的溫度分布等原因,測量結(jié)果都不相同,測量結(jié)果是不可重復(fù)的。
相比使用熱傳感器,瞬態(tài)熱測量技術(shù)提供了更好的解決方案,但不方便的是,得到的Zth曲線。局部網(wǎng)絡(luò)模型(Foster模型)是在時域上的,沒有任何結(jié)構(gòu)意義,所以很難用其準(zhǔn)確評估產(chǎn)品封裝。
從數(shù)學(xué)上看可以將Foster模型轉(zhuǎn)換Cauer模型,Python和Matlab都有相應(yīng)的工具,但這種轉(zhuǎn)換結(jié)果并不唯一。就是說轉(zhuǎn)換產(chǎn)生的熱阻(Rth)和熱容 (Cth)數(shù)組并不唯一確定的,在新的連續(xù)網(wǎng)絡(luò)模型(Cauer模型)也沒有任何物理意義。因此,合并互不協(xié)調(diào)的Cauer模型可能會導(dǎo)致很大的誤差。參考《功率器件熱設(shè)計基礎(chǔ)(七)----熱等效電路模型》
結(jié)構(gòu)函數(shù)分析方法克服了這些弱點。它將瞬態(tài)熱測量結(jié)果轉(zhuǎn)變成熱阻和熱容的曲線圖,提供了從結(jié)到環(huán)境的每一層詳細(xì)的熱信息。這可以很容易并準(zhǔn)確地識別各層的物理特性,如芯片、DCB、銅基板、導(dǎo)熱層TIM和散熱器,甚至能讀出焊料層,以及像風(fēng)扇這樣的冷卻裝置。
雙界面法
瞬態(tài)雙界面法是獲取結(jié)構(gòu)函數(shù)的基礎(chǔ),在JEDEC標(biāo)準(zhǔn)JESD51-14《用于測量半導(dǎo)體器件結(jié)殼熱阻的瞬態(tài)雙界面測試法》中有定義。這標(biāo)準(zhǔn)是T3Ster團(tuán)隊和英飛凌于2005年提出來的,2010年標(biāo)準(zhǔn)發(fā)布。
瞬態(tài)雙界面(TDI)測量方法是對安裝在溫控散熱同一功率半導(dǎo)體器件進(jìn)行兩次ZthJC測量。第一次測量不涂導(dǎo)熱硅脂,第二次安裝正常工藝規(guī)范涂上一層薄薄的導(dǎo)熱脂。由于不涂導(dǎo)熱硅脂的熱阻大,兩條ZthJC曲線會在某一時刻tS處開始明顯分離。
由于熱流一進(jìn)入熱界面層,兩條ZthJC曲線就開始分離,因此此時分界點的ZthJC值ZthJC(ts)就是穩(wěn)態(tài)熱阻RthJC。
結(jié)構(gòu)函數(shù)
結(jié)構(gòu)函數(shù)是一種用于分析半導(dǎo)體器件熱傳導(dǎo)路徑上熱學(xué)性能的工具。它通過將瞬態(tài)熱測量結(jié)果轉(zhuǎn)換為熱阻與熱容的關(guān)系曲線,提供熱量經(jīng)過的每一層(從結(jié)到環(huán)境)的詳細(xì)熱信息。
X軸是從結(jié)到環(huán)境熱阻Rth的累計值,Y軸是熱容Cth的累計值。
圖中每一種顏色區(qū)域代表的一層材料,如靠近原點的狹小粉紅色區(qū)域是芯片,第二部分是芯片焊接層……(本圖是借用JESD51-14,附錄A圖10,標(biāo)準(zhǔn)沒有做材料層解讀,本文用作定性示例解讀)
結(jié)構(gòu)函數(shù)可以清楚表征熱傳導(dǎo)路徑,展示半導(dǎo)體器件從芯片結(jié)到環(huán)境的一維散熱路徑。在這個路徑上,不同材料的熱阻和熱容參數(shù)會發(fā)生變化,結(jié)構(gòu)函數(shù)通過曲線的斜率、波峰等特征來反映這些變化。
結(jié)構(gòu)函數(shù)計算材料熱學(xué)性能,通過結(jié)構(gòu)函數(shù),可以讀出每一層封裝材料的熱阻和熱容值。這對于評估材料的導(dǎo)熱性能、優(yōu)化設(shè)計封裝結(jié)構(gòu)具有重要意義。
實測案例
這是1000A 1700V PrimePACK?3 DF1000R17IE4D的熱阻測試過程:
首先獲得降溫曲線:
轉(zhuǎn)換產(chǎn)生積分結(jié)構(gòu)函數(shù),但發(fā)現(xiàn)每一層的分界點不是很清楚:
通過微分找出分界點:
標(biāo)出區(qū)域,讀出數(shù)值:
區(qū)間1:結(jié)到殼的熱阻=0.0239K/W
區(qū)間2:殼到散熱器的熱阻=0.0244K/W
區(qū)間3:散熱器到環(huán)境
結(jié)構(gòu)函數(shù)的更多應(yīng)用
結(jié)構(gòu)函數(shù)為熱設(shè)計提供了重要的參考數(shù)據(jù)。通過分析結(jié)構(gòu)函數(shù),熱設(shè)計人員可以了解器件在不同條件下的熱學(xué)性能,從而設(shè)計出更高效的散熱系統(tǒng)。
結(jié)構(gòu)函數(shù)還可以用于分析半導(dǎo)體器件的可靠性。通過監(jiān)測器件在長時間工作中的熱學(xué)性能變化,可以及時發(fā)現(xiàn)潛在的熱失效風(fēng)險,提高器件的可靠性。
系列文章
功率器件的熱設(shè)計基礎(chǔ)(一)---功率半導(dǎo)體的熱阻
功率器件的熱設(shè)計基礎(chǔ)(二)---熱阻的串聯(lián)和并聯(lián)
功率器件熱設(shè)計基礎(chǔ)(三)----功率半導(dǎo)體殼溫和散熱器溫度定義和測試方法
功率器件熱設(shè)計基礎(chǔ)(四)——功率半導(dǎo)體芯片溫度和測試方法
功率器件熱設(shè)計基礎(chǔ)(五)——功率半導(dǎo)體熱容
功率器件熱設(shè)計基礎(chǔ)(六)——瞬態(tài)熱測量