作者:郝旭帥??校對:陸輝
大俠好,歡迎來到FPGA技術江湖,江湖偌大,相見即是緣分。大俠可以關注FPGA技術江湖,在“闖蕩江湖”、"行俠仗義"欄里獲取其他感興趣的資源,或者一起煮酒言歡。
本系列將帶來FPGA的系統(tǒng)性學習,從最基本的數(shù)字電路基礎開始,最詳細操作步驟,最直白的言語描述,手把手的“傻瓜式”講解,讓電子、信息、通信類專業(yè)學生、初入職場小白及打算進階提升的職業(yè)開發(fā)者都可以有系統(tǒng)性學習的機會。
系統(tǒng)性的掌握技術開發(fā)以及相關要求,對個人就業(yè)以及職業(yè)發(fā)展都有著潛在的幫助,希望對大家有所幫助。后續(xù)會陸續(xù)更新 Xilinx 的 Vivado、ISE 及相關操作軟件的開發(fā)的相關內容,學習FPGA設計方法及設計思想的同時,實操結合各類操作軟件,會讓你在技術學習道路上無比的順暢,告別技術學習小BUG卡破腦殼,告別目前忽悠性的培訓誘導,真正的去學習去實戰(zhàn)應用。話不多說,上貨。
SPI 協(xié)議驅動設計
本篇實現(xiàn)基于叁芯智能科技的SANXIN -B01 FPGA開發(fā)板,以下為配套的教程,如有入手開發(fā)板,可以登錄官方淘寶店購買,還有配套的學習視頻。
SANXIN-B01 Verilog教程-郝旭帥團隊
SPI是串行外設接口(Serial Peripheral Interface)的縮寫。SPI,是一種高速的,全雙工,同步的通信總線,并且在芯片的管腳上只占用四根線,節(jié)約了芯片的管腳,同時為PCB的布局上節(jié)省空間,提供方便,正是出于這種簡單易用的特性,如今越來越多的芯片集成了這種通信協(xié)議。
SPI的通信原理很簡單,它以主從方式工作,這種模式通常有一個主設備和一個或多個從設備,中間靠三線或者四線連接(三線時為單向傳輸或者數(shù)據(jù)線雙向傳輸)。所有基于SPI的設備共有的,它們是MISO、MOSI、SCLK、CS。
MISO– Master Input Slave Output,主設備數(shù)據(jù)輸入,從設備數(shù)據(jù)輸出。
MOSI– Master Output Slave Input,主設備數(shù)據(jù)輸出,從設備數(shù)據(jù)輸入。
SCLK – Serial Clock,時鐘信號,由主設備產生。
CS – Chip Select,從設備使能信號,由主設備控制。
cs是從芯片是否被主芯片選中的控制信號,也就是說只有片選信號為預先規(guī)定的使能信號時(高電位或低電位),主芯片對此從芯片的操作才有效。這就使在同一條總線上連接多個spi設備成為可能。
通訊是通過數(shù)據(jù)交換完成的,由sclk提供時鐘脈沖,mosi、miso則基于此脈沖完成數(shù)據(jù)傳輸。數(shù)據(jù)輸出通過 mosi線,數(shù)據(jù)在時鐘上升沿或下降沿時改變,在緊接著的下降沿或上升沿被讀取。完成一位數(shù)據(jù)傳輸,輸入也使用同樣原理。因此,至少需要N次時鐘信號的改變(上沿和下沿為一次),才能完成N位數(shù)據(jù)的傳輸。
spi通信有四種不同的模式,不同的從設備可能在出廠時就已經(jīng)配置為某種模式。通信的雙方必須是工作在同一模式下,所以我們可以對主設備的spi模式進行配置,通過CPOL(時鐘極性)和CPHA(時鐘相位)來控制我們主設備的通信模式。
mode0:CPOL=0,CPHA=0;
mode1:CPOL=0,CPHA=1;
mode2:CPOL=1,CPHA=0;
mode3:CPOL=1,CPHA=1;
時鐘極性CPOL是用來配置SCLK在空閑時,應該處于的狀態(tài);時鐘相位CPHA用來配置在第幾個邊沿進行采樣。
CPOL=0,表示在空閑狀態(tài)時,時鐘SCLK為低電平。
CPOL=1,表示在空閑狀態(tài)時,時鐘SCLK為高電平。
CPHA=0,表示數(shù)據(jù)采樣是在第1個邊沿。
CPHA=1,表示數(shù)據(jù)采樣是在第2個邊沿。
即:
CPOL=0,CPHA=0:此時空閑態(tài)時,SCLK處于低電平,數(shù)據(jù)采樣是在第1個邊沿,也就是SCLK由低電平到高電平的跳變,所以數(shù)據(jù)采樣是在上升沿,數(shù)據(jù)發(fā)送是在下降沿。
CPOL=0,CPHA=1:此時空閑態(tài)時,SCLK處于低電平,數(shù)據(jù)發(fā)送是在第1個邊沿,也就是SCLK由低電平到高電平的跳變,所以數(shù)據(jù)采樣是在下降沿,數(shù)據(jù)發(fā)送是在上升沿。
CPOL=1,CPHA=0:此時空閑態(tài)時,SCLK處于高電平,數(shù)據(jù)采集是在第1個邊沿,也就是SCLK由高電平到低電平的跳變,所以數(shù)據(jù)采集是在下降沿,數(shù)據(jù)發(fā)送是在上升沿。
CPOL=1,CPHA=1:此時空閑態(tài)時,SCLK處于高電平,數(shù)據(jù)發(fā)送是在第1個邊沿,也就是SCLK由高電平到低電平的跳變,所以數(shù)據(jù)采集是在上升沿,數(shù)據(jù)發(fā)送是在下降沿。
硬件簡介
FLASH閃存 的英文名稱是"Flash Memory",一般簡稱為"Flash",它屬于內存器件的一種,是一種非易失性( Non-Volatile )內存。
在開發(fā)板上有一塊flash(M25P16),用來保存FPGA的硬件配置信息,也可以用來存儲用戶的應用程序或數(shù)據(jù)。
M25P16是一款帶有寫保護機制和高速SPI總線訪問的2M字節(jié)串行Flash存儲器,該存儲器主要特點:2M字節(jié)的存儲空間,分32個扇區(qū),每個扇區(qū)256頁,每頁256字節(jié);能單個扇區(qū)擦除和整片擦除;每扇區(qū)擦寫次數(shù)保證10萬次、數(shù)據(jù)保存期限至少20年。
C(serial clock:串行時鐘)為D和Q提供了數(shù)據(jù)輸入或者輸出的時序。D的數(shù)據(jù)總是在C的上升沿被采樣。Q的數(shù)據(jù) 在C的下降沿被輸出。
(Chip Select:芯片選擇端),當輸入為低時,該芯片被選中,可以允許進行讀寫操作。當輸入為高時,該芯片被釋放,不能夠進行操作。
對于H——o——l——d——和W——, 為保持功能和硬件寫保護功能,在本設計中不使用此管腳,在硬件設計時,這兩個管腳全部被拉高了,即全部失效。
flash采用spi的通信協(xié)議,flash當做從機。serial clcok等效于spi中的sclk,chip select等效于spi中的cs,D等效于spi中的mosi,Q等效于spi中的miso。
flash可以支持mode0和mode3,這兩種模式中,都是在時鐘的上升沿采樣,在時鐘的下降沿發(fā)送數(shù)據(jù)。
flash的每一頁都可以被寫入,但是寫入只能是把1改變?yōu)?。擦除可以把0改變?yōu)?。所以在正常寫入數(shù)據(jù)之前,都要將flash進行擦除。
flash的命令表如下:
下面介紹幾個常用的命令。
RDID(Read Identification :讀ID):發(fā)送命令RDID(9F),然后接收第1個字節(jié)的memory type(20H),第二個字節(jié)的memory capacity(15H)。后續(xù)的字節(jié)暫不關心。
WREN(Write Enable :寫使能):在任何寫或者擦除的命令之前,都必須首先打開寫使能。打開寫使能為發(fā)送命令WREN(06h)。
RDSR(Read Status Register:讀狀態(tài)寄存器):發(fā)送命令RDSR(05h),然后返回一個字節(jié)的狀態(tài)值。
狀態(tài)寄存器的格式如下:
WIP(Write In Progress bit)表示flash內部是否正在進行內部操作,寫和擦除都會導致flash內部進行一段時間的工作,在內部工作期間,外部的命令會被忽略,所以在進行任何命令之前,都需要查看flash內部是否正在工作。WIP為1時,表示flash內部正在工作;WIP為0時,表示flash內部沒有在工作。
READ(Read DATA Bytes:讀數(shù)據(jù)):發(fā)送命令READ(03H),后續(xù)發(fā)送3個字節(jié)的地址,然后就可以接收數(shù)據(jù),內部的地址會不斷遞增。一個讀命令就可以把整個flash全部讀完。
PP(Page Program :頁編寫):發(fā)送命令PP(02H),接著發(fā)送3個字節(jié)的地址,然后發(fā)送數(shù)據(jù)即可。切記所寫的數(shù)據(jù)不能超過本頁的地址范圍。
SE(Sector Erase :扇區(qū)擦除):發(fā)送命令SE(D8H),接著發(fā)送3個字節(jié)的地址。
BE(Bulk Erase:整片擦除):發(fā)送命令BE(C7H)。
關于flash的其他的介紹,可以參考03_芯片手冊->FLASH->M25P16.pdf。
設計要求
設計flash(M25P16)控制器。
設計分析
根據(jù)M25P16的數(shù)據(jù)手冊得知,其接口為spi接口,且支持模式0和模式3,本設計中選擇模式0。
輸入時序圖如下:
輸出時序如下:
時序圖中所對應的符號說明:
根據(jù)輸入和輸出的時序圖以及參數(shù)表,將SPI的時鐘的頻率定為10MHz。
在設計中,F(xiàn)PGA作為主機,M25P16作為從機。
架構設計和信號說明
此模塊命名為m25p16_drive。
二級模塊(分模塊)(第一頁)
二級模塊(分模塊)(第二頁)
設計中,各個命令單獨寫出控制器,通過多路選擇器選擇出對應的命令,然后控制spi_8bit_drive將數(shù)據(jù)按照spi的協(xié)議發(fā)送出去。各個命令的脈沖通過ctrl模塊進行控制各個命令控制器,寫入的數(shù)據(jù)首先寫入到寫緩沖區(qū),讀出的數(shù)據(jù)讀出后寫入到讀緩沖區(qū)。
暫不分配的端口,在應用時都是由上游模塊進行控制,本設計測試時,編寫上游模塊進行測試。
各個模塊的功能,和連接線的功能在各個模塊設計中說明。
spi_8bit_drive設計實現(xiàn)
本模塊負責將8bit的并行數(shù)據(jù)按照spi協(xié)議發(fā)送出去,以及負責按照spi協(xié)議接收數(shù)據(jù),將接收的數(shù)據(jù)(8bit)并行傳輸給各個模塊。
spi_send_en為發(fā)送數(shù)據(jù)使能信號(脈沖信號),spi_send_data為所要發(fā)送數(shù)據(jù),spi_send_done為發(fā)送完成信號(脈沖信號)。
spi_read_en為接收數(shù)據(jù)使能信號(脈沖信號),spi_read_data為所接收的數(shù)據(jù),spi_read_done為接收完成信號(脈沖信號)。
module spi_8bit_drive (
input wire clk,
input wire rst_n,
input wire spi_send_en,
input wire [7:0] spi_send_data,
output reg spi_send_done,
input wire spi_read_en,
output reg [7:0] spi_read_data,
output reg spi_read_done,
output wire spi_sclk,
output wire spi_mosi,
input wire spi_miso
);
reg [8:0] send_data_buf;
reg [3:0] send_cnt;
reg rec_en;
reg rec_en_n;
reg [3:0] rec_cnt;
reg [7:0] rec_data_buf;
always @ (negedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
send_data_buf <= 9'd0;
else
if (spi_send_en == 1'b1)
send_data_buf <= {spi_send_data, 1'b0};
else
send_data_buf <= send_data_buf;
end
always @ (negedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
send_cnt <= 4'd8;
else
if (spi_send_en == 1'b1)
send_cnt <= 4'd0;
else
if (send_cnt < 4'd8)
send_cnt <= send_cnt + 1'b1;
else
send_cnt <= send_cnt;
end
assign spi_mosi = send_data_buf[8 - send_cnt];
assign spi_sclk = (send_cnt < 4'd8 || rec_en_n == 1'b1) ? clk : 1'b0;
always @ (negedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
spi_send_done <= 1'b0;
else
if (send_cnt == 4'd7)
spi_send_done <= 1'b1;
else
spi_send_done <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rec_en <= 1'b0;
else
if (spi_read_en == 1'b1)
rec_en <= 1'b1;
else
if (rec_cnt == 4'd7)
rec_en <= 1'b0;
else
rec_en <= rec_en;
end
always @ (negedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rec_en_n <= 1'b0;
else
rec_en_n <= rec_en;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rec_data_buf <= 8'd0;
else
if (rec_en == 1'b1)
rec_data_buf <= {rec_data_buf[6:0], spi_miso};
else
rec_data_buf <=rec_data_buf;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rec_cnt <= 4'd0;
else
if (rec_en == 1'b1)
rec_cnt <= rec_cnt + 1'b1;
else
rec_cnt <= 4'd0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
spi_read_done <= 1'b0;
else
if (rec_cnt == 4'd8)
spi_read_done <= 1'b1;
else
spi_read_done <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
spi_read_data <= 8'd0;
else
if (rec_cnt == 4'd8)
spi_read_data <= rec_data_buf;
else
spi_read_data <= spi_read_data;
end
endmodule
在發(fā)送邏輯控制中,全部的信號采用下降沿驅動。利用外部給予的spi_send_en作為啟動信號,啟動send_cnt。send_cnt在不發(fā)送數(shù)據(jù)時為8,發(fā)送數(shù)據(jù)時,從0到7。
在接收邏輯中,全部的信號采用上升沿驅動。利用外部給予的spi_read_en作為啟動信號,啟動rec_en,經(jīng)過移位接收數(shù)據(jù)。
在spi_sclk輸出時,采用組合邏輯。由于設計采用spi的模式0,故而spi_sclk不發(fā)送或者接收數(shù)據(jù)時為0,接收數(shù)據(jù)時為時鐘信號。因為要求為模式0,所以在接收數(shù)據(jù)時,spi_sclk的輸出不能夠先有下降沿,即要求spi_sclk的控制信號不能由上升沿信號驅動,所以將rec_en同步到下降沿的rec_en_n。
仿真代碼為:
`timescale 1ns/1ps
module spi_8bit_drive_tb;
reg clk;
reg rst_n;
reg spi_send_en;
reg [7:0] spi_send_data;
wire spi_send_done;
reg spi_read_en;
wire [7:0] spi_read_data;
wire spi_read_done;
wire spi_sclk;
wire spi_mosi;
reg spi_miso;
spi_8bit_drive spi_8bit_drive_inst(
.clk (clk),
.rst_n (rst_n),
.spi_send_en (spi_send_en),
.spi_send_data (spi_send_data),
.spi_send_done (spi_send_done),
.spi_read_en (spi_read_en),
.spi_read_data (spi_read_data),
.spi_read_done (spi_read_done),
.spi_sclk (spi_sclk),
.spi_mosi (spi_mosi),
.spi_miso (spi_miso)
);
initial clk = 1'b0;
always # 50 clk = ~clk;
initial begin
rst_n = 1'b0;
spi_send_en = 1'b0;
spi_send_data = 8'd0;
spi_read_en = 1'b0;
spi_miso = 1'b0;
# 201
rst_n = 1'b1;
# 200
@ (posedge clk);
# 2;
spi_send_en = 1'b1;
spi_send_data = {$random} % 256;
@ (posedge clk);
# 2;
spi_send_en = 1'b0;
spi_send_data = 8'd0;
@ (posedge spi_send_done);
# 2000
@ (posedge clk);
# 2;
spi_read_en = 1'b1;
@ (posedge clk);
# 2;
spi_read_en = 1'b0;
@ (posedge spi_read_done);
# 200
$stop;
end
always @ (negedge clk) spi_miso <= {$random} % 2;
endmodule
在仿真中,將時鐘設置為10MHz。
所有的信號采用上升沿驅動。發(fā)送一個8bit的隨機數(shù)值,接收一個8bit的隨機數(shù)值。
spi_miso信號為從機下降沿驅動信號。
通過RTL仿真,可以看出發(fā)送和接收全部正常。
mux7_1設計實現(xiàn)
本模塊負責將7個命令模塊發(fā)出的命令(寫使能、寫數(shù)據(jù)和讀使能)經(jīng)過選擇發(fā)送給spi_8bit_drive模塊。
module mux7_1 (
input wire rdsr_send_en,
input wire [7:0] rdsr_send_data,
input wire rdsr_read_en,
input wire pp_send_en,
input wire [7:0] pp_send_data,
input wire wren_send_en,
input wire [7:0] wren_send_data,
input wire be_send_en,
input wire [7:0] be_send_data,
input wire se_send_en,
input wire [7:0] se_send_data,
input wire rdid_send_en,
input wire [7:0] rdid_send_data,
input wire rdid_read_en,
input wire read_send_en,
input wire [7:0] read_send_data,
input wire read_read_en,
input wire [2:0] mux_sel,
output reg spi_send_en,
output reg [7:0] spi_send_data,
output reg spi_read_en
);
always @ * begin
case (mux_sel)
3'd0 : begin
spi_send_en = rdsr_send_en;
spi_send_data = rdsr_send_data;
spi_read_en = rdsr_read_en;
end
3'd1 : begin
spi_send_en = pp_send_en;
spi_send_data = pp_send_data;
spi_read_en = 1'b0;
end
3'd2 : begin
spi_send_en = wren_send_en;
spi_send_data = wren_send_data;
spi_read_en = 1'b0;
end
3'd3 : begin
spi_send_en = be_send_en;
spi_send_data = be_send_data;
spi_read_en = 1'b0;
end
3'd4 : begin
spi_send_en = se_send_en;
spi_send_data = se_send_data;
spi_read_en = 1'b0;
end
3'd5 : begin
spi_send_en = rdid_send_en;
spi_send_data = rdid_send_data;
spi_read_en = rdid_read_en;
end
3'd6 : begin
spi_send_en = read_send_en;
spi_send_data = read_send_data;
spi_read_en = read_read_en;
end
default : begin
spi_send_en = 1'b0;
spi_send_data = 8'd0;
spi_read_en = 1'b0;
end
endcase
end
endmodule
在設計中,有的命令模塊不需要進行讀?。╬p和se等等),此時將輸出的讀使能信號輸出為低電平。
be設計實現(xiàn)
該模塊接收到be_en(整片擦除的脈沖信號)信號后,發(fā)送對應的使能和數(shù)據(jù),等待發(fā)送完成脈沖。發(fā)送完成后,輸出擦除完成的脈沖。
module be (
input wire clk,
input wire rst_n,
input wire be_en,
output reg be_done,
output reg be_send_en,
output wire [7:0] be_send_data,
input wire spi_send_done
);
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
be_send_en <= 1'b0;
else
be_send_en <= be_en;
end
assign be_send_data = 8'hc7;
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
be_done <= 1'b0;
else
be_done <= spi_send_done;
end
endmodule
整片擦除的命令為8’hc7。
wren設計實現(xiàn)
該模塊接收到wren_en(打開flash內部的寫使能的脈沖信號)信號后,發(fā)送對應的使能和數(shù)據(jù),等待發(fā)送完成脈沖。發(fā)送完成后,輸出擦除完成的脈沖。
module wren (
input wire clk,
input wire rst_n,
input wire wren_en,
output reg wren_done,
output reg wren_send_en,
output wire [7:0] wren_send_data,
input wire spi_send_done
);
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
wren_send_en <= 1'b0;
else
wren_send_en <= wren_en;
end
assign wren_send_data = 8'h06;
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
wren_done <= 1'b0;
else
wren_done <= spi_send_done;
end
endmodule
打開flash內部寫使能的命令碼為8’h06。
se設計實現(xiàn)
該模塊接收到se_en(擦除扇區(qū)的寫使能的脈沖信號)信號后,發(fā)送對應的使能和數(shù)據(jù),等待發(fā)送完成脈沖。發(fā)送完成后,接著發(fā)送高八位地址,中間八位地址和低八位地址。全部發(fā)送完成后,發(fā)送se_done信號。
該模塊采用狀態(tài)機實現(xiàn)。SE_STATE(扇區(qū)擦除命令發(fā)送)、H_ADDR(高八位地址發(fā)送)、M_ADDR(中間八位地址發(fā)送)、L_ADDR(低八位地址發(fā)送)、SE_DONE(扇區(qū)擦除完成)。所有的脈沖信號在未標注的時刻,輸出全部為0。
設計代碼為:
module se (
input wire clk,
input wire rst_n,
input wire se_en,
input wire [23:0] se_addr,
output reg se_done,
output reg se_send_en,
output reg [7:0] se_send_data,
input wire spi_send_done
);
localparam SE_STATE = 5'b00001;
localparam H_ADDR = 5'b00010;
localparam M_ADDR = 5'b00100;
localparam L_ADDR = 5'b01000;
localparam SE_DONE = 5'b10000;
reg [4:0] c_state;
reg [4:0] n_state;
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
c_state <= SE_STATE;
else
c_state <= n_state;
end
always @ * begin
case (c_state)
SE_STATE : begin
if (se_en == 1'b0)
n_state = SE_STATE;
else
n_state = H_ADDR;
end
H_ADDR : begin
if (spi_send_done == 1'b0)
n_state = H_ADDR;
else
n_state = M_ADDR;
end
M_ADDR : begin
if (spi_send_done == 1'b0)
n_state = M_ADDR;
else
n_state = L_ADDR;
end
L_ADDR : begin
if (spi_send_done == 1'b0)
n_state = L_ADDR;
else
n_state = SE_DONE;
end
SE_DONE : begin
if (spi_send_done == 1'b0)
n_state = SE_DONE;
else
n_state = SE_STATE;
end
default : n_state = SE_STATE;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
se_send_en <= 1'b0;
else
case (c_state)
SE_STATE : begin
if (se_en == 1'b1)
se_send_en <= 1'b1;
else
se_send_en <= 1'b0;
end
H_ADDR : begin
if (spi_send_done == 1'b1)
se_send_en <= 1'b1;
else
se_send_en <= 1'b0;
end
M_ADDR : begin
if (spi_send_done == 1'b1)
se_send_en <= 1'b1;
else
se_send_en <= 1'b0;
end
L_ADDR : begin
if (spi_send_done == 1'b1)
se_send_en <= 1'b1;
else
se_send_en <= 1'b0;
end
SE_DONE : begin
se_send_en <= 1'b0;
end
default : se_send_en <= 1'b0;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
se_send_data <= 8'd0;
else
case (c_state)
SE_STATE : begin
if (se_en == 1'b1)
se_send_data <= 8'hd8;
else
se_send_data <= 8'd0;
end
H_ADDR : begin
if (spi_send_done == 1'b1)
se_send_data <= se_addr[23:16];
else
se_send_data <= 8'd0;
end
M_ADDR : begin
if (spi_send_done == 1'b1)
se_send_data <= se_addr[15:8];
else
se_send_data <= 8'd0;
end
L_ADDR : begin
if (spi_send_done == 1'b1)
se_send_data <= se_addr[7:0];
else
se_send_data <= 8'd0;
end
SE_DONE : begin
se_send_data <= 8'd0;
end
default : se_send_data <= 8'd0;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
se_done <= 1'b0;
else
if (c_state == SE_DONE && spi_send_done == 1'b1)
se_done <= 1'b1;
else
se_done <= 1'b0;
end
endmodule
在發(fā)送過程中,由于是每8bit發(fā)送一次,所以在時序上將看到發(fā)送時,每8個脈沖一組,中間會有明顯的間隔。
pp設計實現(xiàn)
該模塊負責將外部寫fifo中的數(shù)據(jù)寫入到flash中。wr_fifo_rd為寫fifo的讀使能信號,wrdata為從寫fifo中讀出的數(shù)據(jù),wr_len為需要寫入flash中數(shù)據(jù)的長度,wr_addr為寫入地址。
該模塊采用狀態(tài)機實現(xiàn)。PP_STATE(發(fā)送pp命令),H_ADDR(發(fā)送高八位地址)、M_ADDR(發(fā)送中間八位地址),L_ADDR(發(fā)送低八位地址)、RDFIFO(讀寫fifo)、FIFO_WAIT(等待讀寫fifo的數(shù)據(jù)輸出)、SEND(發(fā)送8bit數(shù)據(jù))、SEND_WAIT(發(fā)送等待,發(fā)送完成后判斷是否發(fā)送完成)。對于所有的脈沖信號,沒有賦值的位置,全部賦值為0。
cnt為記錄已經(jīng)發(fā)送的數(shù)據(jù)個數(shù)。
設計代碼為:
module pp (
input wire clk,
input wire rst_n,
input wire pp_en,
output reg pp_done,
output reg wr_fifo_rd,
input wire [7:0] wrdata,
input wire [8:0] wr_len,
input wire [23:0] wr_addr,
output reg pp_send_en,
output reg [7:0] pp_send_data,
input wire spi_send_done
);
localparam PP_STATE = 8'b0000_0001;
localparam H_ADDR = 8'b0000_0010;
localparam M_ADDR = 8'b0000_0100;
localparam L_ADDR = 8'b0000_1000;
localparam RDFIFO = 8'b0001_0000;
localparam FIFO_WAIT = 8'b0010_0000;
localparam SEND = 8'b0100_0000;
localparam SEND_WAIT = 8'b1000_0000;
reg [7:0] c_state;
reg [7:0] n_state;
reg [8:0] cnt;
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
c_state <= PP_STATE;
else
c_state <= n_state;
end
always @ * begin
case (c_state)
PP_STATE : begin
if (pp_en == 1'b0)
n_state = PP_STATE;
else
n_state = H_ADDR;
end
H_ADDR : begin
if (spi_send_done == 1'b1)
n_state = M_ADDR;
else
n_state = H_ADDR;
end
M_ADDR : begin
if (spi_send_done == 1'b1)
n_state = L_ADDR;
else
n_state = M_ADDR;
end
L_ADDR : begin
if (spi_send_done == 1'b1)
n_state = RDFIFO;
else
n_state = L_ADDR;
end
RDFIFO : begin
if (spi_send_done == 1'b1)
n_state = FIFO_WAIT;
else
n_state = RDFIFO;
end
FIFO_WAIT : begin
n_state = SEND;
end
SEND : begin
n_state = SEND_WAIT;
end
SEND_WAIT : begin
if (spi_send_done == 1'b1)
if (cnt == wr_len)
n_state = PP_STATE;
else
n_state = FIFO_WAIT;
else
n_state = SEND_WAIT;
end
default : n_state = PP_STATE;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
pp_send_en <= 1'b0;
else
case (c_state)
PP_STATE : begin
if (pp_en == 1'b1)
pp_send_en <= 1'b1;
else
pp_send_en <= 1'b0;
end
H_ADDR : begin
if (spi_send_done == 1'b1)
pp_send_en <= 1'b1;
else
pp_send_en <= 1'b0;
end
M_ADDR : begin
if (spi_send_done == 1'b1)
pp_send_en <= 1'b1;
else
pp_send_en <= 1'b0;
end
L_ADDR : begin
if (spi_send_done == 1'b1)
pp_send_en <= 1'b1;
else
pp_send_en <= 1'b0;
end
SEND : begin
pp_send_en <= 1'b1;
end
default : pp_send_en <= 1'b0;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
pp_send_data <= 8'd0;
else
case (c_state)
PP_STATE : begin
if (pp_en == 1'b1)
pp_send_data <= 8'h02;
else
pp_send_data <= 8'd0;
end
H_ADDR : begin
if (spi_send_done == 1'b1)
pp_send_data <= wr_addr[23:16];
else
pp_send_data <= 8'd0;
end
M_ADDR : begin
if (spi_send_done == 1'b1)
pp_send_data <= wr_addr[15:8];
else
pp_send_data <= 8'd0;
end
L_ADDR : begin
if (spi_send_done == 1'b1)
pp_send_data <= wr_addr[7:0];
else
pp_send_data <= 8'd0;
end
SEND : begin
pp_send_data <= wrdata;
end
default : pp_send_data <= 8'd0;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
pp_done <= 1'b0;
else
if (c_state == SEND_WAIT && spi_send_done == 1'b1 && cnt == wr_len)
pp_done <= 1'b1;
else
pp_done <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
cnt <= 9'd0;
else
if ((c_state == RDFIFO && spi_send_done == 1'b1) || (c_state == SEND_WAIT && spi_send_done == 1'b1 && cnt < wr_len))
cnt <= cnt + 1'b1;
else
if (c_state == PP_STATE)
cnt <= 9'd0;
else
cnt <= cnt;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
wr_fifo_rd <= 1'b1;
else
if ((c_state == RDFIFO && spi_send_done == 1'b1) || (c_state == SEND_WAIT && spi_send_done == 1'b1 && cnt < wr_len))
wr_fifo_rd <= 1'b1;
else
wr_fifo_rd <= 1'b0;
end
endmodule
rdsr設計實現(xiàn)
本模塊的功能為讀取m25p16的狀態(tài)寄存器,主要檢測狀態(tài)寄存器的最低位(WIP)。
WIP(write in progress :正在進行寫進程),該bie位表示了flash內部是否在進行寫進程。如果處于寫進程時,flash忽略外部所有的命令,所以建議在執(zhí)行任何命令前,首先進行檢測該位。1表示正在寫進程中,0表示不處于寫進程。
如果檢測到正在寫進程中,進行延遲1ms,然后再次讀取該位狀態(tài)。直到寫進程結束。
本模塊采用狀態(tài)機設計實現(xiàn)。ILDE(發(fā)送讀狀態(tài)寄存器命令)、RDSRSTATE(發(fā)送讀使能)、WIP(判斷wip位)、 DELAY1ms(延遲1ms)。cnt為延遲1ms的計數(shù)器。
設計代碼為:
module rdsr (
input wire clk,
input wire rst_n,
input wire rdsr_en,
output reg rdsr_done,
output reg rdsr_send_en,
output reg [7:0] rdsr_send_data,
input wire spi_send_done,
output reg rdsr_read_en,
input wire [7:0] spi_read_data,
input wire spi_read_done
);
parameter T_1ms = 50_000;
localparam IDLE = 4'b0001;
localparam RDSRSTATE = 4'b0010;
localparam WIP = 4'b0100;
localparam DELAY1ms = 4'b1000;
reg [3:0] c_state;
reg [3:0] n_state;
reg [15:0] cnt;
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
c_state <= IDLE;
else
c_state <= n_state;
end
always @ * begin
case (c_state)
IDLE : begin
if (rdsr_en == 1'b0)
n_state = IDLE;
else
n_state = RDSRSTATE;
end
RDSRSTATE : begin
if (spi_send_done == 1'b1)
n_state = WIP;
else
n_state = RDSRSTATE;
end
WIP : begin
if (spi_read_done == 1'b0)
n_state = WIP;
else
if (spi_read_data[0] == 1'b0)
n_state = IDLE;
else
n_state = DELAY1ms;
end
DELAY1ms : begin
if (cnt < T_1ms - 1'b1)
n_state = DELAY1ms;
else
n_state = RDSRSTATE;
end
default : n_state = IDLE;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
cnt <= 16'd0;
else
if (c_state == DELAY1ms && cnt < T_1ms - 1'b1)
cnt <= cnt + 1'b1;
else
cnt <= 16'd0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rdsr_done <= 1'b0;
else
if (c_state == WIP && spi_read_done == 1'b1 && spi_read_data[0] == 1'b0)
rdsr_done <= 1'b1;
else
rdsr_done <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rdsr_send_data <= 8'd0;
else
if ((c_state == IDLE && rdsr_en == 1'b1) || (c_state == DELAY1ms && cnt == T_1ms - 1'b1))
rdsr_send_data <= 8'h05;
else
rdsr_send_data <= 8'd0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rdsr_send_en <= 1'b0;
else
if ((c_state == IDLE && rdsr_en == 1'b1) || (c_state == DELAY1ms && cnt == T_1ms - 1'b1))
rdsr_send_en <= 1'b1;
else
rdsr_send_en <= 1'd0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rdsr_read_en <= 1'b0;
else
if (c_state == RDSRSTATE && spi_send_done == 1'b1)
rdsr_read_en <= 1'b1;
else
rdsr_read_en <= 1'b0;
end
endmodule
rdid設計實現(xiàn)
該模塊負責讀取flash的ID(2015),驗證ID的正確性。
該模塊采用狀態(tài)機的方式實現(xiàn)。IDLE(等待讀取ID的命令)、IDSTATE1(讀取高八位ID)、IDSTATE2(讀取中間八位ID)、IDSTATE3(讀取低八位ID)、ID_CHECK(檢測ID的正確性)。
狀態(tài)轉移圖如下:
設計代碼為:
module rdid (
input wire clk,
input wire rst_n,
input wire rdid_en,
output reg rdid_done,
output reg rdid_send_en,
output reg [7:0] rdid_send_data,
input wire spi_send_done,
output reg rdid_read_en,
input wire spi_read_done,
input wire [7:0] spi_read_data
);
localparam IDLE = 5'b00001;
localparam IDSTATE1 = 5'b00010;
localparam IDSTATE2 = 5'b00100;
localparam IDSTATE3 = 5'b01000;
localparam ID_CHECK = 5'b10000;
reg [4:0] c_state;
reg [4:0] n_state;
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
c_state <= IDLE;
else
c_state <= n_state;
end
always @ * begin
case (c_state)
IDLE : begin
if (rdid_en == 1'b1)
n_state = IDSTATE1;
else
n_state = IDLE;
end
IDSTATE1 : begin
if (spi_send_done == 1'b1)
n_state = IDSTATE2;
else
n_state = IDSTATE1;
end
IDSTATE2 : begin
if (spi_read_done == 1'b1 && spi_read_data == 8'h20)
n_state = IDSTATE3;
else
n_state = IDSTATE2;
end
IDSTATE3 : begin
if (spi_read_done == 1'b1 && spi_read_data == 8'h20)
n_state = ID_CHECK;
else
n_state = IDSTATE3;
end
ID_CHECK : begin
if (spi_read_done == 1'b1 && spi_read_data == 8'h15)
n_state = IDLE;
else
n_state = ID_CHECK;
end
default : n_state = IDLE;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rdid_send_data <= 8'd0;
else
if (c_state == IDLE && rdid_en == 1'b1)
rdid_send_data <= 8'h9f;
else
rdid_send_data <= 8'd0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rdid_send_en <= 1'b0;
else
if (c_state == IDLE && rdid_en == 1'b1)
rdid_send_en <= 1'b1;
else
rdid_send_en <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rdid_read_en <= 1'b0;
else
if ((c_state == IDSTATE1 && spi_send_done == 1'b1) || (c_state == IDSTATE2 && spi_read_done == 1'b1 && spi_read_data == 8'h20) || (c_state == IDSTATE3 && spi_read_done == 1'b1 && spi_read_data == 8'h20))
rdid_read_en <= 1'b1;
else
rdid_read_en <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rdid_done <= 1'b0;
else
if (c_state == ID_CHECK && spi_read_done == 1'b1 && spi_read_data == 8'h15)
rdid_done <= 1'b1;
else
rdid_done <= 1'b0;
end
endmodule
read_ctrl設計實現(xiàn)
該模塊負責將flash的數(shù)據(jù)讀出,寫入到輸出緩存中。
該模塊采用狀態(tài)機實現(xiàn)。RD_STATE(等待讀命令)、H_ADDR(發(fā)送高八位地址)、M_ADDR(發(fā)送中間八位地址)、L_ADDR(發(fā)送低八位地址)、RDDATA(讀取數(shù)據(jù))、WRFIFO(將讀出的數(shù)據(jù)寫入到FIFO中)、CHECK_LEN(判斷讀取的長度)。
狀態(tài)轉移圖如下:
設計代碼為:
module read_ctrl (
input wire clk,
input wire rst_n,
input wire read_en,
input wire [23:0] rd_addr,
input wire [8:0] rd_len,
output reg [7:0] rddata,
output reg rd_fifo_wr,
output reg read_done,
output reg read_send_en,
output reg [7:0] read_send_data,
input wire spi_send_done,
output reg read_read_en,
input wire spi_read_done,
input wire [7:0] spi_read_data
);
localparam RD_STATE = 7'b000_0001;
localparam H_ADDR = 7'b000_0010;
localparam M_ADDR = 7'b000_0100;
localparam L_ADDR = 7'b000_1000;
localparam RDDATA = 7'b001_0000;
localparam WRFIFO = 7'b010_0000;
localparam CHECK_LEN = 7'b100_0000;
reg [6:0] c_state;
reg [6:0] n_state;
reg [8:0] cnt;
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
c_state <= RD_STATE;
else
c_state <= n_state;
end
always @ * begin
case (c_state)
RD_STATE : begin
if (read_en == 1'b1)
n_state = H_ADDR;
else
n_state = RD_STATE;
end
H_ADDR : begin
if (spi_send_done == 1'b1)
n_state = M_ADDR;
else
n_state = H_ADDR;
end
M_ADDR : begin
if (spi_send_done == 1'b1)
n_state = L_ADDR;
else
n_state = M_ADDR;
end
L_ADDR : begin
if (spi_send_done == 1'b1)
n_state = RDDATA;
else
n_state = L_ADDR;
end
RDDATA : begin
if (spi_send_done == 1'b1)
n_state = WRFIFO;
else
n_state = RDDATA;
end
WRFIFO : begin
if (spi_read_done == 1'b1)
n_state = CHECK_LEN;
else
n_state = WRFIFO;
end
CHECK_LEN : begin
if (cnt == rd_len)
n_state = RD_STATE;
else
n_state = WRFIFO;
end
default : n_state = RD_STATE;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
cnt <= 9'd0;
else
if ((c_state == RDDATA && spi_send_done == 1'b1) || (c_state == CHECK_LEN && cnt < rd_len))
cnt <= cnt + 1'b1;
else
if (c_state == RD_STATE)
cnt <= 9'd0;
else
cnt <= cnt;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
read_read_en <= 1'b0;
else
if ((c_state == RDDATA && spi_send_done == 1'b1) || (c_state == CHECK_LEN && cnt < rd_len))
read_read_en <= 1'b1;
else
read_read_en <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
read_done <= 1'b0;
else
if (c_state == CHECK_LEN && cnt == rd_len)
read_done <= 1'b1;
else
read_done <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rd_fifo_wr <= 1'b0;
else
if (c_state == WRFIFO && spi_read_done == 1'b1)
rd_fifo_wr <= 1'b1;
else
rd_fifo_wr <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rddata <= 8'd0;
else
if (c_state == WRFIFO && spi_read_done == 1'b1)
rddata <= spi_read_data;
else
rddata <= 8'd0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
read_send_en <= 1'b0;
else
case (c_state)
RD_STATE : begin
if (read_en == 1'b1)
read_send_en <= 1'b1;
else
read_send_en <= 1'b0;
end
H_ADDR : begin
if (spi_send_done == 1'b1)
read_send_en <= 1'b1;
else
read_send_en <= 1'b0;
end
M_ADDR : begin
if (spi_send_done == 1'b1)
read_send_en <= 1'b1;
else
read_send_en <= 1'b0;
end
L_ADDR : begin
if (spi_send_done == 1'b1)
read_send_en <= 1'b1;
else
read_send_en <= 1'b0;
end
default : read_send_en <= 1'b0;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
read_send_data <= 8'd0;
else
case (c_state)
RD_STATE : begin
if (read_en == 1'b1)
read_send_data <= 8'h03;
else
read_send_data <= 8'd0;
end
H_ADDR : begin
if (spi_send_done == 1'b1)
read_send_data <= rd_addr[23:16];
else
read_send_data <= 8'd0;
end
M_ADDR : begin
if (spi_send_done == 1'b1)
read_send_data <= rd_addr[15:8];
else
read_send_data <= 8'd0;
end
L_ADDR : begin
if (spi_send_done == 1'b1)
read_send_data <= rd_addr[7:0];
else
read_send_data <= 8'd0;
end
default : read_send_data <= 8'd0;
endcase
end
endmodule
wr_fifo和rd_fifo調用
兩個fifo的寬度設置為8,深度設置為256,同步fifo,帶有復位。
ctrl設計實現(xiàn)
該模塊根據(jù)外部的命令,按照m25p16的執(zhí)行規(guī)則,進行控制各個模塊的執(zhí)行。
該模塊采用狀態(tài)機實現(xiàn)。INIT_RDSR(讀WIP),INIT_RDID(讀ID),INIT_ID(判斷ID),WIP(讀WIP),WIP_DONE(等待WIP),IDLE(空閑狀態(tài)),**STATE(執(zhí)行對應的命令),**WREN(打開flash的寫使能)。在進行任何命令前,都檢查wip。
狀態(tài)轉移圖如下:
在不同的狀態(tài),mux_sel選擇對應的命令通過。
drive_busy只有在IDLE狀態(tài)才是低電平。
spi_cs_n信號, DLE狀態(tài)為高電平、WIP_DONE(INIT_RDID)中spi_read_done信號為高時 (保證能夠多次讀取狀態(tài)寄存器)、在其他狀態(tài)發(fā)生切換時,spi_cs_n 為高電平,否則為低電平。
設計代碼為:
module ctrl (
input wire clk,
input wire rst_n,
input wire flag_be,
input wire flag_se,
input wire flag_wr,
input wire flag_rd,
input wire [23:0] addr,
input wire [8:0] len,
output wire drive_busy,
output reg spi_cs_n,
input wire spi_read_done,
output reg rdsr_en,
input wire rdsr_done,
output reg wren_en,
input wire wren_done,
output reg pp_en,
output reg [23:0] wr_addr,
output reg [8:0] wr_len,
input wire pp_done,
output reg be_en,
input wire be_done,
output reg se_en,
output reg [23:0] se_addr,
input wire se_done,
output reg rdid_en,
input wire rdid_done,
output reg read_en,
output reg [23:0] rd_addr,
output reg [8:0] rd_len,
input wire read_done,
output reg [2:0] mux_sel
);
localparam INIT_RDSR = 13'b0000_0000_00001;
localparam INIT_RDID = 13'b0000_0000_00010;
localparam INIT_ID = 13'b0000_0000_00100;
localparam WIP = 13'b0000_0000_01000;
localparam WIP_DONE = 13'b0000_0000_10000;
localparam IDLE = 13'b0000_0001_00000;
localparam RDSTATE = 13'b0000_0010_00000;
localparam PPWREN = 13'b0000_0100_00000;
localparam PPSTATE = 13'b0000_1000_00000;
localparam SEWREN = 13'b0001_0000_00000;
localparam SESTATE = 13'b0010_0000_00000;
localparam BEWREN = 13'b0100_0000_00000;
localparam BESTATE = 13'b1000_0000_00000;
reg [12:0] c_state;
reg [12:0] n_state;
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
c_state <= INIT_RDSR;
else
c_state <= n_state;
end
always @ * begin
case (c_state)
INIT_RDSR : begin
n_state = INIT_RDID;
end
INIT_RDID : begin
if (rdsr_done == 1'b1)
n_state = INIT_ID;
else
n_state = INIT_RDID;
end
INIT_ID : begin
if (rdid_done == 1'b1)
n_state = WIP;
else
n_state = INIT_ID;
end
WIP : begin
n_state = WIP_DONE;
end
WIP_DONE : begin
if (rdsr_done == 1'b1)
n_state = IDLE;
else
n_state = WIP_DONE;
end
IDLE : begin
if (flag_wr == 1'b1)
n_state = PPWREN;
else
if (flag_rd == 1'b1)
n_state = RDSTATE;
else
if (flag_be == 1'b1)
n_state = BEWREN;
else
if (flag_se == 1'b1)
n_state = SEWREN;
else
n_state = IDLE;
end
RDSTATE : begin
if (read_done == 1'b1)
n_state = WIP;
else
n_state = RDSTATE;
end
PPWREN : begin
if (wren_done == 1'b1)
n_state = PPSTATE;
else
n_state = PPWREN;
end
PPSTATE : begin
if (pp_done == 1'b1)
n_state = WIP;
else
n_state = PPSTATE;
end
SEWREN : begin
if (wren_done == 1'b1)
n_state = SESTATE;
else
n_state = SEWREN;
end
SESTATE : begin
if (se_done == 1'b1)
n_state = WIP;
else
n_state = SESTATE;
end
BEWREN : begin
if (wren_done == 1'b1)
n_state = BESTATE;
else
n_state = BEWREN;
end
BESTATE : begin
if (be_done == 1'b1)
n_state = WIP;
else
n_state = BESTATE;
end
default : n_state = INIT_RDSR;
endcase
end
assign drive_busy = (c_state != IDLE || flag_be == 1'b1 || flag_rd == 1'b1 || flag_se == 1'b1 || flag_wr == 1'b1);
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
spi_cs_n <= 1'b1;
else
case (c_state)
INIT_RDSR : spi_cs_n <= 1'b1;
INIT_RDID : if (spi_read_done == 1'b1)
spi_cs_n <= 1'b1;
else
spi_cs_n <= 1'b0;
INIT_ID : if (rdid_done == 1'b1)
spi_cs_n <= 1'b1;
else
spi_cs_n <= 1'b0;
WIP : spi_cs_n <= 1'b1;
WIP_DONE : if (spi_read_done == 1'b1)
spi_cs_n <= 1'b1;
else
spi_cs_n <= 1'b0;
IDLE : spi_cs_n <= 1'b1;
RDSTATE : if (read_done == 1'b1)
spi_cs_n <= 1'b1;
else
spi_cs_n <= 1'b0;
PPWREN : if (wren_done == 1'b1)
spi_cs_n <= 1'b1;
else
spi_cs_n <= 1'b0;
PPSTATE : if (pp_done == 1'b1)
spi_cs_n <= 1'b1;
else
spi_cs_n <= 1'b0;
SEWREN : if (wren_done == 1'b1)
spi_cs_n <= 1'b1;
else
spi_cs_n <= 1'b0;
SESTATE : if (se_done == 1'b1)
spi_cs_n <= 1'b1;
else
spi_cs_n <= 1'b0;
BEWREN : if (wren_done == 1'b1)
spi_cs_n <= 1'b1;
else
spi_cs_n <= 1'b0;
BESTATE : if (be_done == 1'b1)
spi_cs_n <= 1'b1;
else
spi_cs_n <= 1'b0;
default : spi_cs_n <= 1'b1;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rdsr_en <= 1'b0;
else
if (c_state == INIT_RDSR || c_state == WIP)
rdsr_en <= 1'b1;
else
rdsr_en <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
wren_en <= 1'b0;
else
if (c_state == IDLE && (flag_be == 1'b1 || flag_se == 1'b1 || flag_wr == 1'b1))
wren_en <= 1'b1;
else
wren_en <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
pp_en <= 1'b0;
else
if (c_state == PPWREN && wren_done == 1'b1)
pp_en <= 1'b1;
else
pp_en <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
wr_len <= 9'd0;
else
if (c_state == IDLE && flag_wr == 1'b1)
wr_len <= len;
else
wr_len <= wr_len;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
wr_addr <= 24'd0;
else
if (c_state == IDLE && flag_wr == 1'b1)
wr_addr <= addr;
else
wr_addr <= wr_addr;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
be_en <= 1'b0;
else
if (c_state == BEWREN && wren_done == 1'b1)
be_en <= 1'b1;
else
be_en <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
se_en <= 1'b0;
else
if (c_state == SEWREN && wren_done == 1'b1)
se_en <= 1'b1;
else
se_en <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
se_addr <= 24'd0;
else
if (c_state == IDLE && flag_se == 1'b1)
se_addr <= addr;
else
se_addr <= se_addr;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rdid_en <= 1'b0;
else
if (c_state == INIT_RDID && rdsr_done == 1'b1)
rdid_en <= 1'b1;
else
rdid_en <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rd_len <= 9'd0;
else
if (c_state == IDLE && flag_rd == 1'b1)
rd_len <= len;
else
rd_len <= rd_len;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rd_addr <= 24'd0;
else
if (c_state == IDLE && flag_rd == 1'b1)
rd_addr <= addr;
else
rd_addr <= rd_addr;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
read_en <= 1'b0;
else
if (c_state == IDLE && flag_rd == 1'b1)
read_en <= 1'b1;
else
read_en <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
mux_sel <= 3'd0;
else
case (c_state)
INIT_RDSR : mux_sel <= 3'd0;
INIT_RDID : mux_sel <= 3'd0;
INIT_ID : mux_sel <= 3'd5;
WIP : mux_sel <= 3'd0;
WIP_DONE : mux_sel <= 3'd0;
IDLE : mux_sel <= 3'd0;
RDSTATE : mux_sel <= 3'd6;
PPWREN : mux_sel <= 3'd2;
PPSTATE : mux_sel <= 3'd1;
SEWREN : mux_sel <= 3'd2;
SESTATE : mux_sel <= 3'd4;
BEWREN : mux_sel <= 3'd2;
BESTATE : mux_sel <= 3'd3;
default : mux_sel <= 3'd0;
endcase
end
endmodule
m25p16_drive設計實現(xiàn)
本模塊負責連接所有二級模塊,實現(xiàn)所有的功能。
module m25p16_drive (
input wire clk,
input wire rst_n,
input wire wrfifo_wr,
input wire [7:0] wrfifo_data,
input wire flag_be,
input wire flag_se,
input wire flag_wr,
input wire flag_rd,
input wire [23:0] addr,
input wire [8:0] len,
input wire rdfifo_rd,
output wire [7:0] rdfifo_rdata,
output wire rdfifo_rdempty,
output wire drive_busy,
output wire spi_cs_n,
output wire spi_sclk,
output wire spi_mosi,
input wire spi_miso
);
wire spi_send_en;
wire [7:0] spi_send_data;
wire spi_send_done;
wire spi_read_en;
wire [7:0] spi_read_data;
wire spi_read_done;
wire rdsr_send_en;
wire [7:0] rdsr_send_data;
wire rdsr_read_en;
wire pp_send_en;
wire [7:0] pp_send_data;
wire wren_send_en;
wire [7:0] wren_send_data;
wire be_send_en;
wire [7:0] be_send_data;
wire se_send_en;
wire [7:0] se_send_data;
wire rdid_send_en;
wire [7:0] rdid_send_data;
wire rdid_read_en;
wire read_send_en;
wire [7:0] read_send_data;
wire read_read_en;
wire [2:0] mux_sel;
wire be_en;
wire be_done;
wire wren_en;
wire wren_done;
wire se_en;
wire [23:0] se_addr;
wire se_done;
wire pp_en;
wire pp_done;
wire wr_fifo_rd;
wire [7:0] wrdata;
wire [8:0] wr_len;
wire [23:0] wr_addr;
wire rdsr_en;
wire rdsr_done;
wire rdid_en;
wire rdid_done;
wire read_en;
wire [23:0] rd_addr;
wire [8:0] rd_len;
wire [7:0] rddata;
wire rd_fifo_wr;
wire read_done;
ctrl ctrl_inst(
.clk (clk),
.rst_n (rst_n),
.flag_be (flag_be),
.flag_se (flag_se),
.flag_wr (flag_wr),
.flag_rd (flag_rd),
.addr (addr),
.len (len),
.drive_busy (drive_busy),
.spi_cs_n (spi_cs_n),
.spi_read_done (spi_read_done),
.rdsr_en (rdsr_en),
.rdsr_done (rdsr_done),
.wren_en (wren_en),
.wren_done (wren_done),
.pp_en (pp_en),
.wr_addr (wr_addr),
.wr_len (wr_len),
.pp_done (pp_done),
.be_en (be_en),
.be_done (be_done),
.se_en (se_en),
.se_addr (se_addr),
.se_done (se_done),
.rdid_en (rdid_en),
.rdid_done (rdid_done),
.read_en (read_en),
.rd_addr (rd_addr),
.rd_len (rd_len),
.read_done (read_done),
.mux_sel (mux_sel)
);
rd_fifo rd_fifo_inst (
.aclr ( ~rst_n ),
.clock ( clk ),
.data ( rddata ),
.rdreq ( rdfifo_rd ),
.wrreq ( rd_fifo_wr ),
.empty ( rdfifo_rdempty ),
.q ( rdfifo_rdata )
);
wr_fifo wr_fifo_inst (
.aclr ( ~rst_n ),
.clock ( clk ),
.data ( wrfifo_data ),
.rdreq ( wr_fifo_rd ),
.wrreq ( wrfifo_wr ),
.q ( wrdata )
);
read_ctrl read_ctrl_inst(
.clk (clk),
.rst_n (rst_n),
.read_en (read_en),
.rd_addr (rd_addr),
.rd_len (rd_len),
.rddata (rddata),
.rd_fifo_wr (rd_fifo_wr),
.read_done (read_done),
.read_send_en (read_send_en),
.read_send_data (read_send_data),
.spi_send_done (spi_send_done),
.read_read_en (read_read_en),
.spi_read_done (spi_read_done),
.spi_read_data (spi_read_data)
);
rdid rdid_inst(
.clk (clk),
.rst_n (rst_n),
.rdid_en (rdid_en),
.rdid_done (rdid_done),
.rdid_send_en (rdid_send_en),
.rdid_send_data (rdid_send_data),
.spi_send_done (spi_send_done),
.rdid_read_en (rdid_read_en),
.spi_read_done (spi_read_done),
.spi_read_data (spi_read_data)
);
rdsr rdsr_inst(
.clk (clk),
.rst_n (rst_n),
.rdsr_en (rdsr_en),
.rdsr_done (rdsr_done),
.rdsr_send_en (rdsr_send_en),
.rdsr_send_data (rdsr_send_data),
.spi_send_done (spi_send_done),
.rdsr_read_en (rdsr_read_en),
.spi_read_data (spi_read_data),
.spi_read_done (spi_read_done)
);
pp pp_inst(
.clk (clk),
.rst_n (rst_n),
.pp_en (pp_en),
.pp_done (pp_done),
.wr_fifo_rd (wr_fifo_rd),
.wrdata (wrdata),
.wr_len (wr_len),
.wr_addr (wr_addr),
.pp_send_en (pp_send_en),
.pp_send_data (pp_send_data),
.spi_send_done (spi_send_done)
);
se se_inst(
.clk (clk),
.rst_n (rst_n),
.se_en (se_en),
.se_addr (se_addr),
.se_done (se_done),
.se_send_en (se_send_en),
.se_send_data (se_send_data),
.spi_send_done (spi_send_done)
);
wren wren_inst(
.clk (clk),
.rst_n (rst_n),
.wren_en (wren_en),
.wren_done (wren_done),
.wren_send_en (wren_send_en),
.wren_send_data (wren_send_data),
.spi_send_done (spi_send_done)
);
be be_inst(
.clk (clk),
.rst_n (rst_n),
.be_en (be_en),
.be_done (be_done),
.be_send_en (be_send_en),
.be_send_data (be_send_data),
.spi_send_done (spi_send_done)
);
mux7_1 mux7_1_inst(
.rdsr_send_en (rdsr_send_en),
.rdsr_send_data (rdsr_send_data),
.rdsr_read_en (rdsr_read_en),
.pp_send_en (pp_send_en),
.pp_send_data (pp_send_data),
.wren_send_en (wren_send_en),
.wren_send_data (wren_send_data),
.be_send_en (be_send_en),
.be_send_data (be_send_data),
.se_send_en (se_send_en),
.se_send_data (se_send_data),
.rdid_send_en (rdid_send_en),
.rdid_send_data (rdid_send_data),
.rdid_read_en (rdid_read_en),
.read_send_en (read_send_en),
.read_send_data (read_send_data),
.read_read_en (read_read_en),
.mux_sel (mux_sel),
.spi_send_en (spi_send_en),
.spi_send_data (spi_send_data),
.spi_read_en (spi_read_en)
);
spi_8bit_drive spi_8bit_drive_inst(
.clk (clk),
.rst_n (rst_n),
.spi_send_en (spi_send_en),
.spi_send_data (spi_send_data),
.spi_send_done (spi_send_done),
.spi_read_en (spi_read_en),
.spi_read_data (spi_read_data),
.spi_read_done (spi_read_done),
.spi_sclk (spi_sclk),
.spi_mosi (spi_mosi),
.spi_miso (spi_miso)
);
endmodule
RTL仿真
本次設計涉及到讀取flash的id以及狀態(tài)寄存器,所以在仿真時需要加入仿真模型。仿真模型放在msim的m25p16_sim_module中。m25p16為仿真模型的頂層文件。
由于讀寫和擦除的時間較長,RTL仿真中,將只仿真RDSR和RDID,其他的功能測試在板級測試時進行。
仿真代碼如下:
`timescale 1ns/1ps
module m25p16_drive_tb;
reg clk;
reg rst_n;
wire drive_busy;
wire spi_cs_n;
wire spi_sclk;
wire spi_mosi;
wire spi_miso;
m25p16_drive m25p16_drive_inst(
.clk (clk),
.rst_n (rst_n),
.wrfifo_wr (1'b0),
.wrfifo_data (8'd0),
.flag_be (1'b0),
.flag_se (1'b0),
.flag_wr (1'b0),
.flag_rd (1'b0),
.addr (24'd0),
.len (9'd0),
.rdfifo_rd (1'b0),
.rdfifo_rdata (),
.rdfifo_rdempty (),
.drive_busy (drive_busy),
.spi_cs_n (spi_cs_n),
.spi_sclk (spi_sclk),
.spi_mosi (spi_mosi),
.spi_miso (spi_miso)
);
m25p16 m25p16_inst(
.c (spi_sclk),
.data_in (spi_mosi),
.s (spi_cs_n),
.w (1'b1),
.hold (1'b1),
.data_out (spi_miso)
);
initial clk = 1'b0;
always # 50 clk = ~clk;
initial begin
rst_n = 1'b0;
# 201
rst_n = 1'b1;
@ (negedge drive_busy);
# 2000
$stop;
end
endmodule
在設置testbench時,注意將所有文件全部添加到文件中。
選擇testbench時,注意選中設置的m25p16_drive_tb。
利用modelsim仿真,可以得出如下RTL仿真波形。
讀到ID,以及檢測WIP都是正確的。
板級測試
由于m25p16的時序原因,整個設計工作在10MHz(利用PLL產生)。
在進行測試控制時,對最后一個扇區(qū)進行擦除;對最后一個扇區(qū)的第一頁進行寫入數(shù)據(jù)100個(1至100);對最后一個扇區(qū)的第一個進行讀取,驗證數(shù)據(jù)是否為1至100。
測試的控制模塊命名為test_ctrl。
此模塊采用狀態(tài)機實現(xiàn)。WRFIFO(將1至100寫入wrfifo中)、SE(扇區(qū)擦除)、PP(寫入flash)、RD(讀出flash)、WAIT_RD(等待讀?。?、CHECK( 檢測讀出的數(shù)據(jù)的正確性)。
設計代碼為:
module test_ctrl (
input wire clk,
input wire rst_n,
output reg wrfifo_wr,
output reg [7:0] wrfifo_data,
output reg flag_se,
output reg flag_wr,
output reg flag_rd,
input wire drive_busy,
output reg rdfifo_rd,
input wire [7:0] rdfifo_rdata
);
localparam WRFIFO = 6'b000_001;
localparam SE = 6'b000_010;
localparam PP = 6'b000_100;
localparam RD = 6'b001_000;
localparam WAIT_RD = 6'b010_000;
localparam CHECK = 6'b100_000;
reg [5:0] c_state;
reg [5:0] n_state;
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
c_state <= WRFIFO;
else
c_state <= n_state;
end
always @ * begin
case (c_state)
WRFIFO : begin
if (wrfifo_data == 8'd100)
n_state = SE;
else
n_state = WRFIFO;
end
SE : begin
if (drive_busy == 1'b0)
n_state = PP;
else
n_state = SE;
end
PP : begin
if (drive_busy == 1'b0)
n_state = RD;
else
n_state = PP;
end
RD : begin
if (drive_busy == 1'b0)
n_state = WAIT_RD;
else
n_state = RD;
end
WAIT_RD : begin
if (drive_busy == 1'b0)
n_state = CHECK;
else
n_state = WAIT_RD;
end
CHECK : begin
n_state = CHECK;
end
default : n_state = WRFIFO;
endcase
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
wrfifo_data <= 8'd0;
else
if (c_state == WRFIFO && wrfifo_data < 8'd100)
wrfifo_data <= wrfifo_data + 1'b1;
else
wrfifo_data <= 8'd0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
wrfifo_wr <= 1'd0;
else
if (c_state == WRFIFO && wrfifo_data < 8'd100)
wrfifo_wr <= 1'd1;
else
wrfifo_wr <= 1'd0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
flag_se <= 1'b0;
else
if (c_state == SE && drive_busy == 1'b0)
flag_se <= 1'b1;
else
flag_se <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
flag_wr <= 1'b0;
else
if (c_state == PP && drive_busy == 1'b0)
flag_wr <= 1'b1;
else
flag_wr <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
flag_rd <= 1'b0;
else
if (c_state == RD && drive_busy == 1'b0)
flag_rd <= 1'b1;
else
flag_rd <= 1'b0;
end
always @ (posedge clk, negedge rst_n) begin
if (rst_n == 1'b0)
rdfifo_rd <= 1'b0;
else
if (c_state == WAIT_RD && drive_busy == 1'b0)
rdfifo_rd <= 1'b1;
else
if (c_state == CHECK && rdfifo_rdata == 8'd99)
rdfifo_rd <= 1'b0;
else
rdfifo_rd <= rdfifo_rd;
end
endmodule
將test模塊設置為頂層。在test模塊中,m25p16_drive例化中,對于整片擦除不做控制,對于addr直接指向最后一個扇區(qū)的第一頁,len指定為100。
代碼為:
module test (
input wire clk,
input wire rst_n,
output wire spi_cs_n,
output wire spi_sclk,
output wire spi_mosi,
input wire spi_miso
);
wire wrfifo_wr;
wire [7:0] wrfifo_data;
wire flag_rd;
wire flag_se;
wire flag_wr;
wire drive_busy;
wire rdfifo_rd;
wire [7:0] rdfifo_rdata;
wire clk_10m;
wire pll_locked;
pll_test pll_test_inst (
.areset ( ~rst_n ),
.inclk0 ( clk ),
.c0 ( clk_10m ),
.locked ( pll_locked )
);
test_ctrl test_ctrl_inst(
.clk (clk_10m),
.rst_n (pll_locked),
.wrfifo_wr (wrfifo_wr),
.wrfifo_data (wrfifo_data),
.flag_se (flag_se),
.flag_wr (flag_wr),
.flag_rd (flag_rd),
.drive_busy (drive_busy),
.rdfifo_rd (rdfifo_rd),
.rdfifo_rdata (rdfifo_rdata)
);
m25p16_drive m25p16_drive_inst(
.clk (clk_10m),
.rst_n (pll_locked),
.wrfifo_wr (wrfifo_wr),
.wrfifo_data (wrfifo_data),
.flag_be (1'b0),
.flag_se (flag_se),
.flag_wr (flag_wr),
.flag_rd (flag_rd),
.addr (24'hff0000),
.len (9'd100),
.rdfifo_rd (rdfifo_rd),
.rdfifo_rdata (rdfifo_rdata),
.rdfifo_rdempty (),
.drive_busy (drive_busy),
.spi_cs_n (spi_cs_n),
.spi_sclk (spi_sclk),
.spi_mosi (spi_mosi),
.spi_miso (spi_miso)
);
endmodule
由于開發(fā)板上的flash是為FPGA進行保存配置信息的,所以管腳都連接在專用管腳上,本次實驗需要將這專用管腳配置為普通io。
右擊器件型號,選擇device。
點擊device and pin options。
選擇Dual-purpose pins,將其中所有的功能改為普通IO。
點擊ok后,即可進行綜合分析。
連接開發(fā)板和PC,打開邏輯分析儀。
采樣時鐘選擇10MHz(PLL 的c0),采樣深度設置為2K。
觀測信號如下圖所示。
首先將wrfifo_wr的觸發(fā)條件設置為上升沿。點擊觸發(fā)后,按下復位按鍵。觸發(fā)后,可以看到寫入數(shù)據(jù)1至100后,然后進行SE命令。
將rdfifo_rd的觸發(fā)條件設置為上升沿(將wrfifo_wr觸發(fā)條件修改為donot care)。點擊觸發(fā)后,按下復位按鍵。
通過仿真和下板實測,驗證控制器設計正確。